If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+6w-520=0
a = 2; b = 6; c = -520;
Δ = b2-4ac
Δ = 62-4·2·(-520)
Δ = 4196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4196}=\sqrt{4*1049}=\sqrt{4}*\sqrt{1049}=2\sqrt{1049}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{1049}}{2*2}=\frac{-6-2\sqrt{1049}}{4} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{1049}}{2*2}=\frac{-6+2\sqrt{1049}}{4} $
| m/10+49=57 | | x^2+√5x-19=0 | | 1,2(3x+6)=-4 | | 6(4x+5)=40x+14 | | 1+4(2x-1)=6.25x+26 | | 30-5kk=-2 | | 6d-30=42 | | 8=56/w | | 66+y-8+y+6=180 | | 96-j=44 | | 4(y-3)=5y+51 | | 12(2x32-3)=6(32) | | (3x)+(5x-64)=180 | | 1=m+6/20 | | 62+61+19v=180 | | 30+3u=96 | | 2w^2+10w-651=0 | | 44+6s+2s=180 | | 4x+6−7x+9=18 | | 7x+4×=-66 | | 3n+1n=-6 | | 106+44+2z=180 | | 2w^2+32w-6144=0 | | 29-q=10 | | t+15=85 | | p–(-27)=13 | | t-15=85 | | 2a-24=-6 | | 3+2x+2+3x=15 | | 3x2-20x+12=0 | | -3+6r=2r+3r | | -9a-5-9=22 |